

HVAC Catalogue

 \odot

CO₂

000

OD Ha

A Proudly South African Company with a Global Reach

Table of Contents

About the HC AHU Range AHU Range - Climates Major Components The Integral Solution for the Control of AHU A Coherent Concept - EC Plug Fans Data Centre Air Handling Units ASHRAE Data Centre Thermal Guide Data Centre Solution Gas Cooler Options Indirect Adiabatic Evaporative Cooling B-Blue Plate Heat Exchanger Operating Theatre Air Handling Units Pharmaceutical Air Handling Units 20 Ecology Air Handling Units 21 Dedicated Outside Air Systems 23 Filter Testing Classification 25 Air Filters and Efficiency 26 Vertical Air Handling Units 30 Horizontal Air Handling Units 32

Horizontal Air Handling Units "V" Sha Heat Recovery Wheel with EC Plug Other Air Handling Unit Designs Cooling Only - Local Solution Glacio Air

> Innovation through Collabor Rooftop Packaged Units Compact Rooftop Units Large Rooftop Units Hybrid Rooftop U Compact Hybrid Large Hybrid Commercial Remote F Guideli Cooli Alti

18

19

naped	34
g Fans	36
	37
	43
	44
pration	45
	46
	50
	52
Inits	53
d Rooftop Units	56
Rooftop Units	58
al Rooftop Units	60
Panels	70
ine ACH	71
ing Load - Rule of Thumb	72
itude and Ambient Temperatures	73
Maximum Duct Velocity	74
Useful Equations	74
Honeywell Refrigerant Application Guide	75
CO ₂ Refrigeration and AHU's	77

About the HC AHU Range

Providing Engineering Excellence

-HVAC offers innovative **C** solutions to both the Commercial and Industrial Air Conditioning markets, whilst creating and sustaining local employment.

We pride ourselves in providing Engineering Excellence with our full range of Air Handling and Rooftop Units. HC Heat-Exchangers' rich engineering heritage, coupled with our desire to remain at the forefront of design and manufacturing technology, ensures our AHU's and RTPU's encompass the latest technology on offer. By ensuring that all of our units' major components are sourced from leading suppliers, who support research and development themselves. This guarantees our clients a world class product engineered to perform.

As a specialist engineering firm we have the experience and capacity to design and manufacture innovative products. By producing units that value energy efficiency we reduce our carbon footprint and protect our environment for future generations.

We understand the increasing need to reduce costs without compromising on quality and energy efficiency - at all levels throughout the value chain. In response to this we offer both a standard range of units, along with custom engineered units to suit site-specific requirements.

Our bespoke solutions allow Air Handling and Rooftop Units to be designed and manufactured in different aspect ratios, as well as in modular form for on-site assembly where required. This modular construction method reduces client site rigging costs, whilst offering a practical solution for sites with limited/restricted access.

Embracing the latest technologies and promoting culture of research and development, our Air Handling and Rooftop Units' construction materials and fastening methods have been optimised to ensure reliable operation and trouble free maintenance.

We design and manufacture units of all sizes and capacities, in various construction materials, to suit the market's requirements. Our standard models range from 1m³/s to 40m³/s.

Our Air Handling and Rooftop Units, which form an integral part of a Central Air Conditioning plant, comprise of various components and solutions to assist the designer in achieving the desired conditioned environment. These components are selected based on their ability to contribute to sustainability, energy efficiency and improved Indoor Air Quality (IAQ). The conditioned air would generally be supplied to the conditioned area via a network of ducting. The type of ducting selected is typically based on the environmental, insulation and budgetary requirements.

With HC Heat-Exchangers you can be assured of professional and knowledgeable assistance during the design, installation and commissioning of any project.

Depending on the specific requirements, application and climate the designer would select the appropriate type of components for the Air Handling Units. The air would be filtered, cooled and/ or heated, humidified and/or dehumidified.

A choice of copper, PU coated, stainless steel, aluminium and aluminium magnesium (AlMg) finned coils are available, whilst the tubing and frame material can vary. The coils are generally copper ubes mechanically bonded to aluminium fins, with copper headers, all contained within a galvanised, aluminium or stainless steel frame. All coils are provided with drain connections and air vents. The tube wall thickness and the test pressures are determined based on the fluid passing through the coil. The cooling coil assembly is fitted on a stainless steel drain pan for condensate removal.

Climate

-Arid-Highland -Humid Continental -Humid Sub Tropical -Ice Cap -Marine West Coast -Mediterranean -Tropical Wet -Tropical Wet and Dry -Tundra -Semi-Arid -Sub Arctic

Application

-Airports -Cinemas -Computer -Rooms -Factories -Hospitals -Industrial Processes -Laboratories -Offices -Restaurants -Schools -Shopping Centres -Swimming Pools

Casing

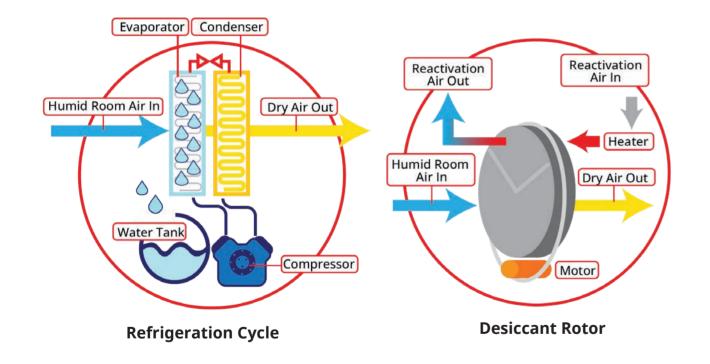
Various panel finish options: Powder coated steel, AluZinc, Chromadek or Stainless Steel. Insulation options include: Flexible, elastomeric thermal insulation, polyurethane, fire retardant polystyrene, mineral wool or calcium silicate. Bases are constructed using galvanised steel or stainless steel sheet metal profiles or heavy duty structural steel sections, either painted or hot dip galvanised.

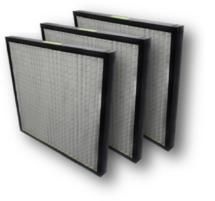
Major Components

Cooling, Heating & Steam Coils

Unit Base

Supply Air Fan


The fans are EC (Electronically Commutated) Plug Fans, with built-in variable speed capability due to the EC brushless DC motor.


Humidifiers

De-Humidifiers

There are various types of De-Humidifiers used within the Air Handling Units. The most popular method utilises the refrigeration cycle in a cooling/heatpump mode followed by the dessicant type where air passes through a rotor containing a water absorbent desiccant material.

Dampers

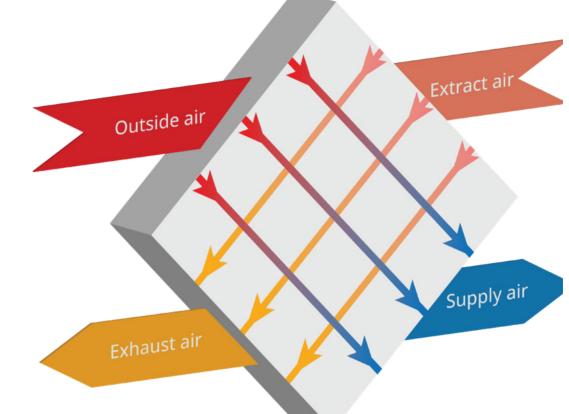
Filters

The type of filters used are determined by the environment, climate and required application. Generally, the filters used within our Air Handling Units are: Panel Washable Filters, Bag Filters, Compact Cassette Filters, Carbon Filters, Electrostatic Filters and HEPA Filters. The dampers can either be motor-driven or manual actuation and control: Outside Air, Return Air, Exhaust Air, etc. The outside air dampers can be controlled automatically via a CO2 sensor. They are supplied in extruded aluminium, galvanised or stainless steel sections with or without seals.

Sound Attenuators

Maintaining acceptable acoustics is an important component of Indoor Environmental Quality (IEC). The application and environment in which the AHU is installed determines the acceptable noise levels. Sound levels can be reduced by selecting the appropriate fans, minimising vibration and drive noises or applying a sound absorbing material inside the wall will reduce noise levels.

M


FFFFF

Heat Pipes/ Run Around Coils

Heat pipes advantage of having no moving parts that would be subject to wear and therefore is free. Heat pipes can be arranged in airstreams where they are either in a stacked arrangement or in a side-by side-arrangement using the copper tubes sloping down towards the warmer

Air-to-Air Heat Exchanger

Extras

Components that can be included within the Air Handling Units, are:

- Heat pipes / Run-around Coils
- Gas Burners

•

- Droplet / Moisture Eliminators •
- Ultraviolet (UV) disinfection lamps
- Photocatalytic Oxidation Air Cleaners •
- Electric Heater Banks •
- Cooling / Heating Valves •
- Switchboard and Controls •
- Electronic or Thermostatic expansion valves •
- Rounded internal unit profiles for hygiene type units •

The heat pipes process is an effective method of transferring heat. The typical heat pipe uses Copper tube and Aluminium fin units positioned around a cooling coil. The sealed copper tubes are evacuated and typically charged with R134a refrigerant. It consists of two coil and the reheat section placed after the cooling coil. These heat pipes are popular within the HVAC system in tropical climates, especially to treat high levels of fresh air that must be cooled. The pre-cooled air enthalpy is then used later to re-heat the air after the cooling coil. This results in energy saving whilst providing dehumidification. These heat pipes increase the latent cooling capacity at reduced

Heat Recovery Wheels

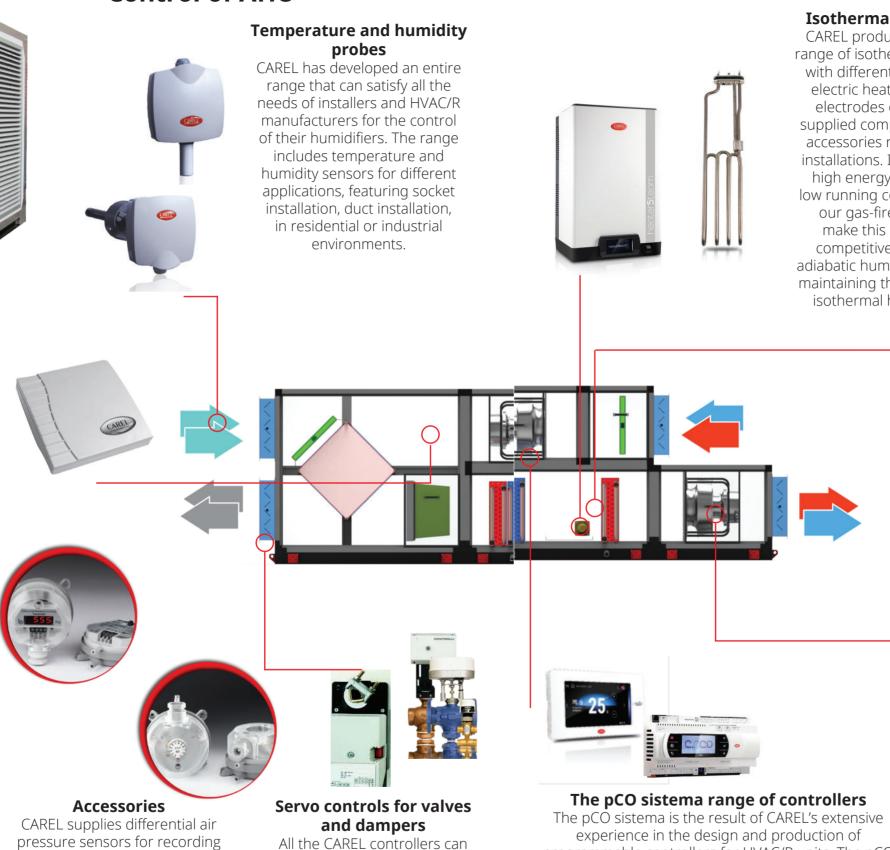
These recovery methods utilise a transfer of energy and are extensively used within the industry to achieve energy saving, by removing both sensible and or latent heat. The wheel is positioned in the unit so that the stale exhaust air is drawn through one half and the outside air through the other in a counter-flow arrangement.

The Integral Solution for the Control of AHU

Air quality probes and combined CO₂ and VOC Probes

The probes analyse the quality of the air using a mixed gas VOC (Volatile Organic Compound) sensor and a CO₂ sensor with a range from 350 to 2000 ppm, Commonly used to measure the air quality in offices, hotels, meeting rooms, homes, shops, restaurants and other air handling equipment. The probes allow for quantitative analysis of contamination by polluting gases.

Differential pressure transducer


The differential pressure transducer uses a new ceramic sensor. It provides a voltage or current signal, calibrated and compensated for the temperature. This is ideal for measuring low pressure values in Air-Conditioning systems, rooms, laboratories and clean rooms containing air and noncorrosive gases.

and managing the pressure

drop through filters, fans and

from all ventilation devices in

general.

manage any Servo control for

dampers and valves. INDUSTRIE

TECHNIK has been chosen as

our preferred partner for the

supply of the actuators.

experience in the design and production of programmable controllers for HVAC/R units. The pCO sistema consists of programmable controllers, user interfaces, software tools for developing applications, gateways and communication interfaces, remote management systems, etc.

Isothermal humidifiers

CAREL produces a complete range of isothermal humidifiers with different outputs, using electric heaters, immersed electrodes or gas boilers, supplied complete with all the accessories required for the installations. In particular, the high energy efficiency and low running costs of gaSteam, our gas-fired humidifier, make this model highly competitive compared to adiabatic humidifiers, while still maintaining the advantages of isothermal humidification.

Adiabatic humidifiers

CAREL produces a complete range of adiabatic humidifiers, with different outputs using atomised water (with and without compressed air). The high efficiency of these units and the complete absence of recirculated water prevents any dangers associated with the Legionella bacteria.

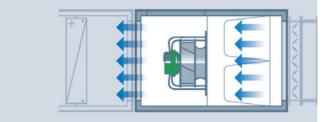
Electrical panels

CAREL manufactures a complete range of electrical panels, available in versions for 1 or 2 fans, with direct or star-delta starting, suitng the various different controllers in the pCO sistema family, and can also supply special versions based on customer specifications.

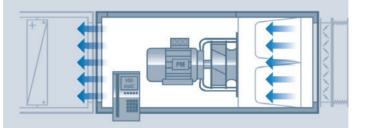
A Coherent Concept

Realistic performance specifications, as the performance data of the entire fan is continuously measured by means of the components, namely the high-performance impeller, GreenTech EC motor and control electronics.

Effective logistics, as a single RadiPac part number includes all components required for all your ventilation demands.

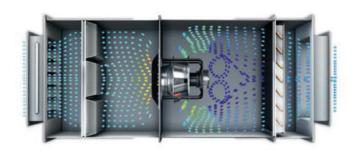

Simple commissioning, as all features necessary for operation are already installed and designed to suit one another.

Simple and safe, as the electronics and motor form one unit. This saves space and ensures easy installation by removing the need for an external frequency converter. As the motor and electronics are already perfectly matched to one another and include all necessary motor protections, this makes additional electronic filters and shielded cables unnecessary.

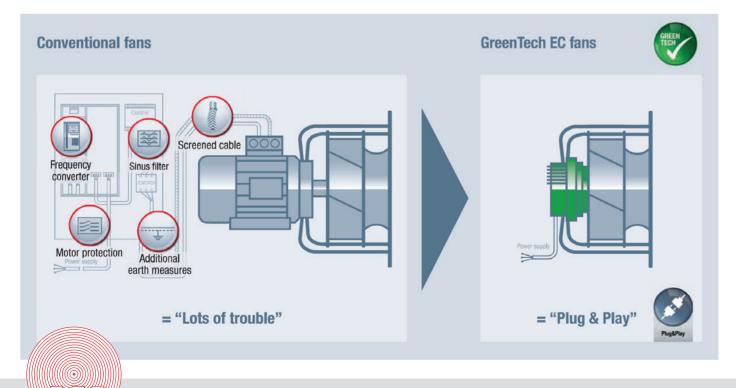

In summary: there is no need for timeconsuming programming during commissioning or for additional earthing and screening work.

Plug & Play really is that simple.

GreenTech EC fans



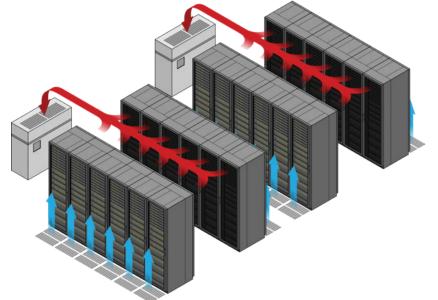
Conventional fans



Permanent magnet motor (PM) with frequency converter

Compact design, as the high-performance impeller is mounted directly on the rotor of the external rotor motor. This allows the entire rotating unit to be balanced at the same time.

Designed certainty for the system builder. A coherent concept. While developing the RadiPac fans, we The basis for the wide optimum efficiency took the real conditions of installation in range is the finely matched interaction of all Air Handling Units into consideration. In the fan components. For example, the Green particular, we optimized the impeller's Tech EC motors with efficiencies of well over outflow characteristics and reduced the 90% more than meet the requirements of deflection losses within the Air Handling efficiency class IE4. Likewise, the design Unit. In addition, a wide optimum efficiency of the impeller contributes to increased range with static overall efficiency of 68% efficiency and quieter operation. enables the fans to work in a wide operating range with lower power consumption.

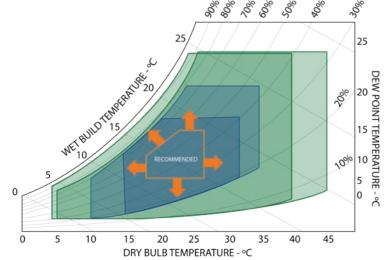

Improvements include, the air intake into the impeller, the positioning of the external rotor motor in the impeller, and the blade profile amongst others. Overall, these measures have improved the efficiency of RadiPac fans by over 13% compared with the previous models.

Data Centre Air Handling Units

ASHRAE Data Centre Thermal Guide

HCHVAC Data Centre Units are designed to suit the client's specific requirements. Our range of CRAC and CRAH units are extensive as we specialise in offering bespoke solutions to suit all environmental conditions.

Modern Data Centres are working harder than ever, increasing the demand on our limited natural resources. With the increasing cost of electricity the need for innovative Data Centre designs is crucial to ensure a sustainable future.


Energy consumption is optimised by the use of innovative technologies and state of the art monitoring systems within Data Centres. The climatic conditions dictate the most economical and environmentally suitable types of systems that could be used in the Data Centre cooling units.

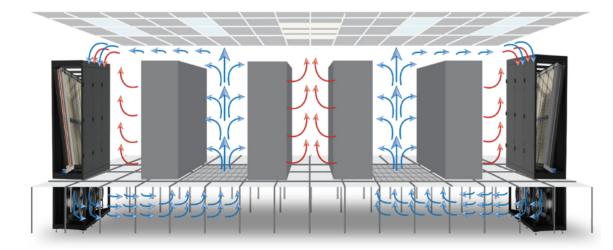
The following are some of the current global trends for cooling Data Centres:

- Geothermal Cooling Solutions
- Pumped Two-Phase Cooling Solutions
- Immersion Cooling Solutions
- Smart Monitoring and IoT Solutions

Nomenclature

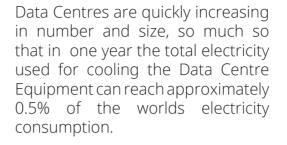
CRAC – Computer Room Air Conditioning CRAH – Computer Room Air Handler

			t Operatior		tions for Air	Product Po	wer Off					
Class	Dry-Bulb Temperature %	Humidity Range C Non-Condensing			Maximum Temprature Change per/hour	Dry-Bulb Temperature ℃	Relative Humidity %					
Recommended (Suitable for all 4 Classes)												
A1 to A4	18 to 27	-9°C DP to 15°C DP and 60% RH										
			Allowa	able								
A1	15 to 32	-12°C DP & 8% RH to 17°C DP and 80% RH	17	3050	5/20	5 to 45	8 to 80					
A2	10 to 35	-12°C DP & 8% RH to 21°C DP and 80% RH	21	3050	5/20	5 to 45	8 to 80					
A3	5 to 40	-12°C DP & 8% RH to 24°C DP and 85% RH	24	3050	5/20	5 to 45	8 to 80					
A4	5 to 45	-12°C DP & 8% RH to 24°C DP and 90% RH	24	3050	5/20	5 to 45	8 to 80					
В	5 to 35	8% RH to 28°C DP and 80% RH	28	3050	NA	5 to 45	8 to 80					
С	5 to 40	8% RH to 28°C DP and 80% RH	28	3050	NA	5 to 45	8 to 80					



Gas Cooler Options

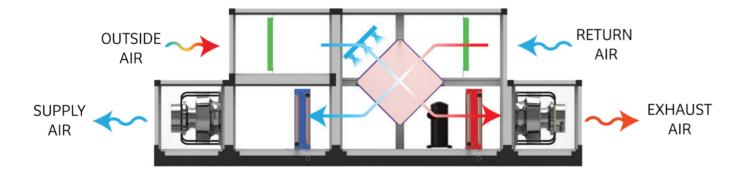
Indirect Adiabatic Evaporative Cooling & Vapour Compression Cooling

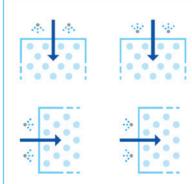

This product offers the best in class energy efficient solution to the Air Conditioning industries needs.

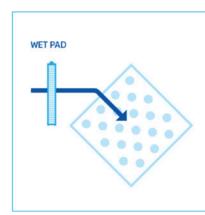
There are various operating modes that are available, depending on the specific indoor and outdoor environmental conditions.

The unit has numerous dampers, allowing for the most economical use of existing conditions to achieve the desired results. The unit uses Air-to-Air Plate Heat Exchangers running in Dry mode with additional Adiabatic, cooling available, as well as Direct Expansion or Chilled Water cooling coils to optimise energy efficiency.

The following are some of the operating modes:

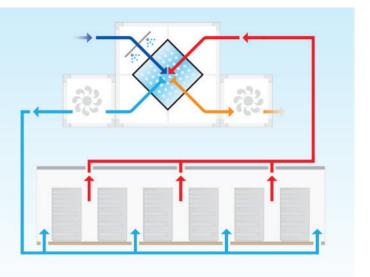

- Free Cooling.
- Dry mode Air to Air Heat Exchanger.
- · Adiabatic with a Wet Pad installed upstream of the Air-to-Air Heat Exchanger.
- Wet mode Water is sprayed over the Air-to -Air Heat Exchanger.
- · DX or Chilled water cooling used in combination with the above modes to achieve the desired room condition at the highest Seasonal Energy Efficiency Rating (SEER)




Many research programs are focused on the reduction of the primary electrical energy used for Data Centre cooling, for example, research into indirect and adiabatic evaporative cooling, which is the most promising cooling technology.

In fact, nowadays, the indoor Data Centre temperature has increased, which also increases the free cooling working hours.

B. Blue is the heart of this system. The air-to-air plate heat exchanger is designed for indirect and adiabatic evaporative cooling applications in the Data Centre environment.



B·Blue Plate Heat Exchanger **The Solution**

	Cost	Maintenance	Heat exchanger
	Cheapest	It is better to use bigger nozzle and to check and clean very often the rack.	Aluminum plate could be used. Side plate with epoxy protection.
ed	Average price	With softened water some dust can settle on the plate. Maintenance should be made often.	Protection on the aluminum plate it is needed as epoxy protection on the side plate.
ized	Higher price. Could be 5 times higher than the mains water	Lowest maintenance	Deionized water is acid. Aluminum protection it is needed to avoid the fretting.

In this application the system is arranged in recirculation mode: the primary air is extracted from the Data Centre, cooled down through the plate heat exchanger in adiabatic mode and finally it is supplied back to the facility.

In the adiabatic cooling approach, the outside air could be cooled down, when needed, through the traditional wet pad installed upstream of the recuperator. Alternatively by means of spraying water directly to the surface of the heat exchanger with its different configurations.

Operating Theatre Air Handling Units

HC-HVAC Operating Theatre Air Handling Units are designed to ensure that contamination of the air with micro-organisms is reduced to acceptable levels.

Airflow and air filtration play a vital role in the effective and efficient prevention of infections caused by airborne pathogens.

Improved Indoor Air Quality (IAC) within the health care environment assists patients to recover quickly and staff to display optimum performance.

For hygienic reasons one-directional airflow is used as a control mechanism in specific rooms; from sterile areas with minimum germ count to less sterile areas where the requirements are less stringent. **HC**-HVAC Cleanroom and Pharmaceutical Air Handling Units are designed to ensure that temperature, humidity and pressurization within controlled environments are maintained to the appropriate design levels whilst meeting the required ISO 14644-1 Cleanroom Standards.

Air change rate, pressurization, temperature control and humidity control are all critical factors for Cleanroom and Bio-pharmaceutical applications.

Unidirectional flow is more effective in continuously sweeping particles from the air due to the piston effect created by the uniform air velocity.

A pressure differential of 12-14 Pa is maintained between the clean and adjacent unclean areas. A positive pressure hierarchy of cleanliness levels, this coupled with the use of airlocks ensures standards are met.

Air Lock

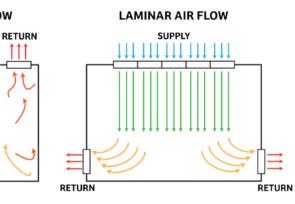
An intermediate room between adjacent areas with different cleanliness levels to prevent airborne cross contamination.

Filtration and Air Flow Requirements

Theatre Description	Primary Pleated Efficiency	Secondary Pocket/Bag or Box Efficiency	Tertiary HEPA High Volume Efficiency	Laminar Flow	Particle Count Class	Minimum Fresh air Changes Per Hour	Minimum Total air Changes Per Hour
	20%	95%	99.97 - 99.9999%		ISO 14644-1		
Casualty/							
Minor Stitch	Х	Х			8	5	25
Maternity/							
Caesarean	Х	Х			8	5	25
General Surgery	Х	Х			7	5	25
Gynaecology	Х	Х			7	5	25
Ophthalmology	Х	Х			7	5	25
Urology	Х	Х			7	5	25
Endoscopy	Х	Х			7	5	25
Plastic Surgery	Х	Х	х		6	5	25
Bone Surgery/					-	-	
Orthopaedic	Х	Х	Х	Х	5	5	25
Heart Surgery	Х	Х	Х	Х	5	5	25
Vascular	Х	Х	Х	Х	5	5	25
Neuro Surgery	Х	Х	Х	Х	5	5	25
Transplations	Х	Х	Х	Х	5	5	25

ww.biosafety-cabinets.com/2016/01/what-you-need-to-know-about-

ISO 1

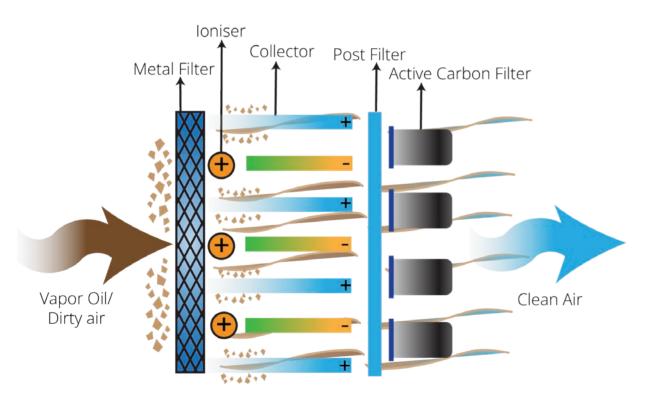

Class			Maximum	Particles/m ³			FED STD 209E
	≥0.1 µm	≥0.1 µm	≥0.1 µm	≥0.1 µm	≥0.1 µm	≥0.1 µm	Equivalent
ISO 1	10	2.37	1.02	0.35	0.083	0.0029	
ISO 2	100	23.7	10.2	3.5	0.83	0.029	
ISO 3	1 000	237	102	35	8.3	0.29	Class 1
ISO 4	10 000	2 370	1 020	352	83	2.9	Class 10
ISO 5	100 000	23 700	10 200	3 520	832	29	Class 100
ISO 6	1.0 x 10⁰	237 000	102 000	35 200	8 320	293	Class 1 000
ISO 7	1.0 x 10 ⁷	2.37 x 10 ⁶	1 020 000	352 000	83 200	2 930	Class 10 000
ISO 8	1.0 x 10 ⁸	2.37 x 10 ⁷	1.02 x 10 ⁷	3 520 000	832 000	29 300	Class 100 000
ISO 9	1.0 x 10 ⁹	2.37 x 10 ⁸	1.02 x 10 ⁸	35 200 000	8 320 000	293 000	Room Air

ww.gics.org.za

Pharmaceutical Air Handling Units

ISO 14644-1 Cleanroom Standards

20



HC-HVAC Ecology units are designed for commercial kitchen exhaust systems to control the environmental emission generated from kitchen extract systems.

The Air Handling Unit consists of Mechanical Filters, Electrostatic Precipitators and Activated Carbon Filters. This allows the unit to efficiently remove the smoke, grease particles and bad odour from the kitchen before the air is exhausted to the environment.

Activated Carbon Filter

Ecology AHU Filtration Process

Dedicated Outside Air Systems (DOAS)

edicated Outside Air Systems have This has resulted in legislation detailing challenges facing the built environment.

Industry leaders have become very familiar with the following terminologies:

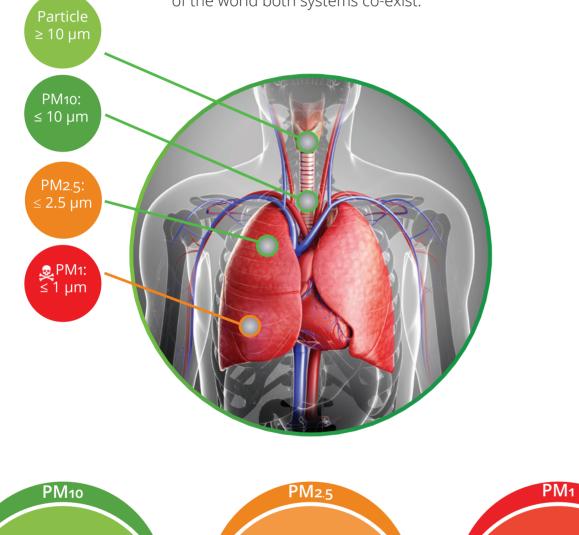
- Indoor Air Quality (IAQ)
- Indoor Environmental Quality (IEQ)
- Sick Building Syndrome (SBS)
- Volatile Organic Compounds (VOC)
- Total Volatile Organic Compounds (TVOC)
- Carbon dioxide (CO₂)
- Air changes per hour (ACPH) .
- Minimum Ventilation Rates (MVR)

The importance of Indoor Air Quality cannot be overstated, however the cost associated with providing the ideal IAO has been a concern.

allowed the HVAC industry to address the the minimum ventilation rates for different occupancy classifications. With the new VRV/F Hybrid DOAS Rooftop Units, we can offer a solution to Indoor Air Ouality concerns. In certain cases air change rates should be prioritised in lieu of merely complying with minimum ventilation rates.

> A Dedicated Outside Air System conditions all the outside air introduced into the building and delivers it to each occupied space, either directly or in conjunction with local or central HVAC units serving those same spaces.

A DOAS system can be designed to provide:


23 Copyright HC Heat-Exchangers ©

Filter Testing Classification

The adoption of the new ISO 16890 standards makes it possible for a harmonised global method of characterising the efficiency of filters.

The two most popular systems that have been used of late are EN 779:2012 – Europe and ASHRAE 52.2 – North America. In many parts of the world both systems co-exist.

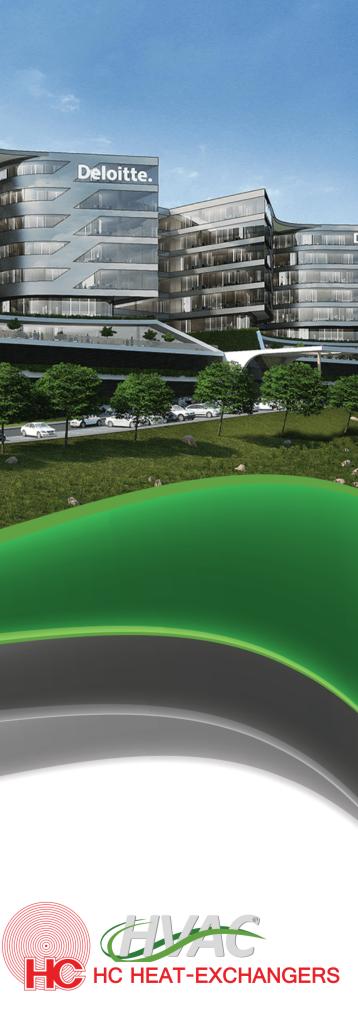
Particles 1 µm or to cancer, cardiovascular diseases and

Classification	Arrestance or Dust Spot Effieciency	US ASHRAE 52.2		EN779 Class	Typical Controlled Contaminant		
	AFI < 65%	MERV 1	G 1	Am < 65%	Particle bigger than 10.0µm		
	AFI 65-70%	MERV 2			Pollen Spanish moss Dust mites		
	AFI 70-75%	MERV 3	G 2	65% ≤ Am < 80%	Sanding dust Spray paint dust		
PRE Filter	AFI 75-80%	MERV 4			Textile fibers		
(G Class)	AFI 80-85%	MERV 5	G 3		Particle within		
	AFI 85-90%	MERV 6	0.5	80% ≤ Am < 90%	3.0µm - 10.0µm		
	NBS 30-35%	MERV 7	G 4	90% ≤ Am	Mold Spores Hairspray Cement		
	NBS 25-30%	MERV 8	64	90% ≤ AIII	dust Snuff Powdered milk		
	NBS 40-45%	MERV 9	F 5	40% ≤ Em < 60%			
	NBS 50-55%	MERV 10	15	40% S EIII < 00%	Particle within 1.0µm - 3.0µm		
	NBS 60-65%	MERV 11	F 6	60% ≤ Em < 80%	Lead dust Milled flour Coal du		
MEDIUM Filter (F Class)	NBS 70-75%	MERV 12	10	0070 <u>2</u> Em < 0070			
(r Class)	NBS 80-85%	MERV 13	F 7	80% ≤ Em < 90%	Particle within 0.3µm - 1.0µm		
	NBS 90-95%	MERV 14	F 8	90% ≤ Em < 95%	All bacteria Cooking oil Smoke Copier toner Face powder Paint		
	NBS > 95%	MERV 15	F 9	95% ≤ Em	pigments		
	≥ 95% at 0.3µm	MERV 16	H10	≥ 85% at MPPS	Particle 0.3µm - 1.0µm		
	≥ 99.97% at 0.3µm	MERV 17	H11	≥ 99.97% at MPPS	Particle 0.12um 0.5um		
HEPA Filter (H Class)	≥ 99.99% at 0.3µm	MERV 18	H12	≥ 99.9% at MPPS	 Particle 0.12µm - 0.5µm Virus (unattached) Carbon dust 		
(n class)	≥ 99.995% at 0.3µm	MERV 19	H13	≥ 99.99% at MPPS	Sea salt All combustion smoke		
	≥ 99.999% at 0.3µm	MERV 20	H14	≥ 99.999% at MPPS	Radon progeny		

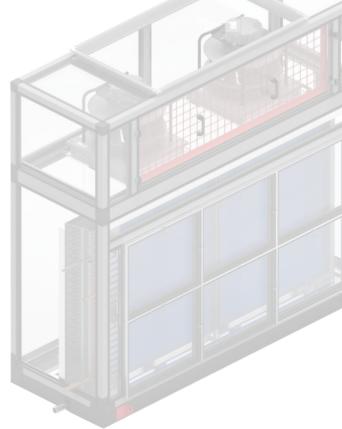
* MERV - Minimum Efficiency Reporting Value * AM - Average Arrestance

* EM - Average Effieciency

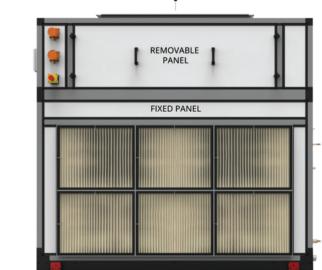
* MPPS - Most Penetrating Particle Size

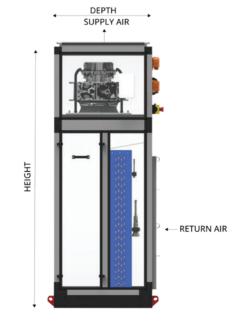


Air Filters and Efficiency



Air Handling Units


Vertical Unit Range with EC Plug Fans

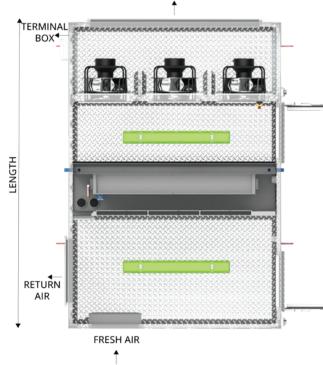

	Supply Air	Unit	Unit	Unit	Approximate	EC Plug	Return Air Spigot	Drain
Model N°	Quantity (m3/s)	Width (mm)	Depth (mm)	Height (mm)	Rigging Weight (kg)	Motor Size (kW Per Fan)	WxH (mm)	Size (2 off)
HC-AHU-V-1vv	1	1450	900	1350	310	1 x 2.5	425 x 400	40
HC-AHU-V-2vv	2	1650	1000	1900	380	1 x 2.5	660 x 500	40
HC-AHU-V-3vv	3	1650	1000	1900	360	1 x 3.8	715 x 700	40
HC-AHU-V-4vv	4	2250	1000	1900	490	2 x 3.8	960 x 700	40
HC-AHU-V-5vv	5	2250	1000	2100	535	2 x 3.8	1185 x 700	40
HC-AHU-V-6vv	6	2880	1000	2100	570	2 x 3.8	1430 x 700	40
HC-AHU-V-7vv	7	2880	1000	2100	685	3 x 3.8	1670 x 700	40
HC-AHU-V-8vv	8	3660	1000	2280	1000	3 x 3.8	1900 x 700	40
HC-AHU-V-9vv	9	3660	1000	2280	1000	3 x 3.8	2145 x 700	40

WIDTH SUPPLY AIR

HEIGHT

HC

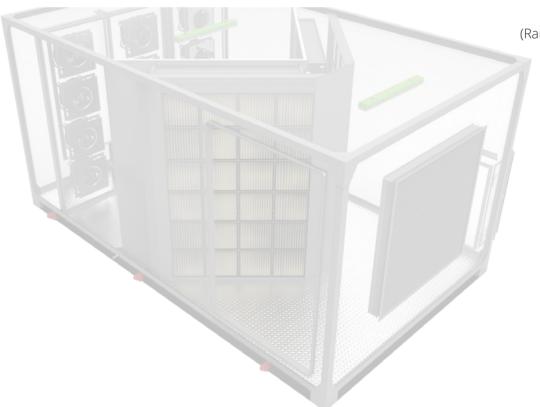
(Range 1m³/s - 9m³/s)

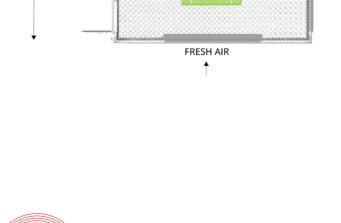


	Supply Air	Unit	Unit	Unit	Approximate	EC Plug	Supply Air Spigot	Return Air Spigot	Drain
Model N°	Quantity (m3/s)	Length (mm)	Width (mm)	Height (mm)	Rigging Weight (kg)	Motor Size (kW Per Fan)	WxH (mm)	WxH (mm)	Size (2 off)
HC-AHU-H-1vv	1	3400	1400	1200	750	1 x 2.5	400 x 450	400 x 450	40
HC-AHU-H-2vv	2	3400	1600	1600	1000	1 x 2.5	650 x 550	650 x 550	40
HC-AHU-H-3vv	3	3500	1600	1600	1000	1 x 3.8	745 x 700	745 x 700	40
HC-AHU-H-4vv	4	3550	1900	1800	1150	1 x 4.4	920 x 750	920 x 750	40
HC-AHU-H-5vv	5	3550	2200	1800	1250	2 x 2.5	925 x 930	925 x 930	40
HC-AHU-H-6vv	6	3550	2200	2400	1350	2 x 3.8	1000 x 1015	1035 x 1050	40
HC-AHU-H-7vv	7	3600	2200	2400	1400	2 x 4.4	1050 x 1150	1050 x 1150	40
HC-AHU-H-8vv	8	3600	2200	2400	1550	2 x 4.4	1300 x 1075	1300 x 1075	40
HC-AHU-H-9vv	9	3600	2600	2400	1750	3 x 3.8	1250 x 1250	1250 x 1250	40
HC-AHU-H-10vv	10	3600	2800	2400	2400	3 x 4.4	1300 x 1350	1300 x 1350	40
HC-AHU-H-11vv	11	3600	2800	2600	2100	3 x 4.4	1360 x 1400	1360 x 1400	40
HC-AHU-H-12vv	12	3600	2800	2600	2500	3 x 4.4	1450 x 1440	1450 x 1440	40
HC-AHU-H-13vv	13	3600	2800	3000	2300	4 x 4.4	1500 x 1455	1500 x 1535	40
HC-AHU-H-14vv	14	3600	2800	3000	2350	4 x 4.4	1500 x 1600	1500 x 1600	40
HC-AHU-H-15vv	15	3600	2900	3000	2400	4 x 4.4	1550 x 1630	1653 x 1600	40
HC-AHU-H-16vv	16	3600	3400	3000	2600	4 x 4.4	1665 x 1660	1665 x 1660	40
HC-AHU-H-17vv	17	3700	3400	3000	2700	5 x 4.4	1695 x 1700	1725 x 1735	40
HC-AHU-H-18vv	18	3700	3400	3000	2750	5 x 4.4	1765 x 1760	1765 x 1760	40
HC-AHU-H-19vv	19	4100	3400	3500	3900	5 x 4.4	1800 x 1800	1800 x 1800	40
HC-AHU-H-20vv	20	4100	3400	3500	4000	5 x 4.4	1900 x 1800	1900 x 1800	40

WIDTH SUPPLY AIR

HC


Horizontal Unit with EC Plug Fans


(Range 1m³/s - 20m³/s)

Horizontal Unit with 'V' Shape Coils & EC Plug Fans

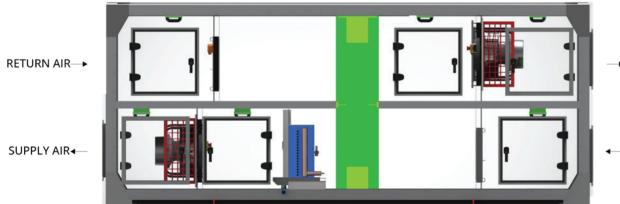
Model N°	Supply Air	Unit	Unit	Unit	Approximate	EC Plug	Supply Air Spigot	Return Air Spigot	Drain
	Quantity (m3/s)	Length (mm)	Width (mm)	Height (mm)	Rigging Weight (kg)	Motor Size (kW Per Fan)	WxH (mm)	WxH (mm)	Size (2 off)
HC-AHU-H-21vv	21	5225	3300	3900	4100	6 x 4.4	950x3350	950x3300	40
HC-AHU-H-22vv	22	5225	3300	3900	4100	6 x 4.4	1000x3350	1000x3300	40
HC-AHU-H-23vv	23	5825	3500	3900	4300	7 x 4.4	1000x3350	1000x3300	40
HC-AHU-H-24vv	24	5825	3500	3900	4400	7 x 4.4	1000x3350	1000x3300	40
HC-AHU-H-25vv	25	5825	3700	3900	4500	8 x 4.4	1150x3350	1150x3300	40
HC-AHU-H-26vv	26	5825	3700	3900	4500	8 x 4.4	1200x3350	1200x3300	40
HC-AHU-H-27vv	27	5825	3900	3900	4600	9 x 4.4	1200x3350	1200x3300	40
HC-AHU-H-28vv	28	5825	3900	3900	4900	9 x 4.4	1250x3350	1300x3300	40
HC-AHU-H-29vv	29	6390	4200	4000	5100	10 x 4.4	1250x3450	1300x3400	40
HC-AHU-H-30vv	30	6390	4200	4100	5100	10 x 4.4	1270x3450	1300x3400	40

WIDTH SUPPLY AIR

RETURN AIR

TERMINAL BOX

LENGTH

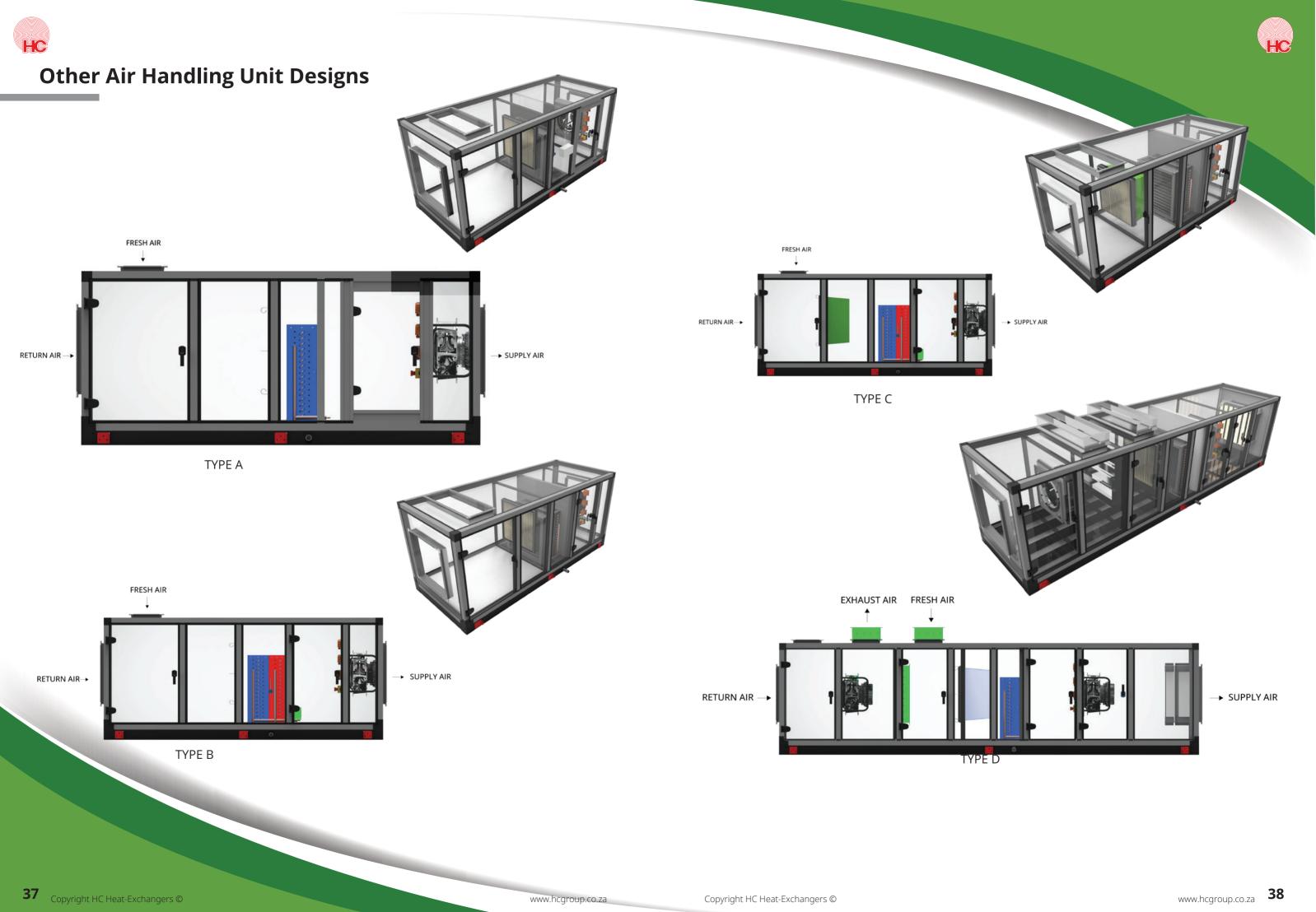


(Range 21m³/s - 30m³/s)

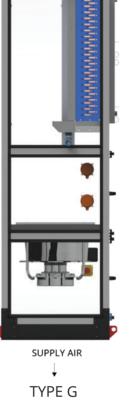

Heat Recovery Wheel with EC Plug Fans

Model N°	Supply Air	Unit	Unit	Unit	Approximate	EC Plug	Supply Air Spigot	Return Air Spigot	Drain
	Quantity (m3/s)	Length (mm)	Width (mm)	Height (mm)	Rigging Weight (kg)	Motor Size (kW Per Fan)	WxH (mm)	WxH (mm)	Size (2 off)
HC-AHU-HRW-1vv	1	3495	1800	2000	1200	1 x 2.5	800x300	400x400	25
HC-AHU-HRW-2vv	2	3495	2000	2700	1600	1 x 2.5	800x550	600x550	25
HC-AHU-HRW-3vv	3	3495	2400	2700	2000	1 x 3.8	900x750	900x550	32
HC-AHU-HRW-4vv	4	4060	2500	2700	2200	1 x 4.4	1600x600	1300x500	32
HC-AHU-HRW-5vv	5	4060	2900	3100	2650	2 x 2.5	1600x700	1500x550	32
HC-AHU-HRW-6vv	6	4660	3100	3700	3200	2 x 3.8	1650x800	2000x500	32
HC-AHU-HRW-7vv	7	4660	3200	3700	3750	2 x 4.4	1650x950	2100x550	32

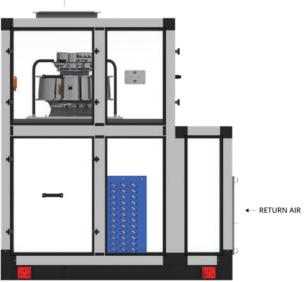
→ EXHAUST AIR


FRESH AIR

(Range 1m³/s - 7m³/s)



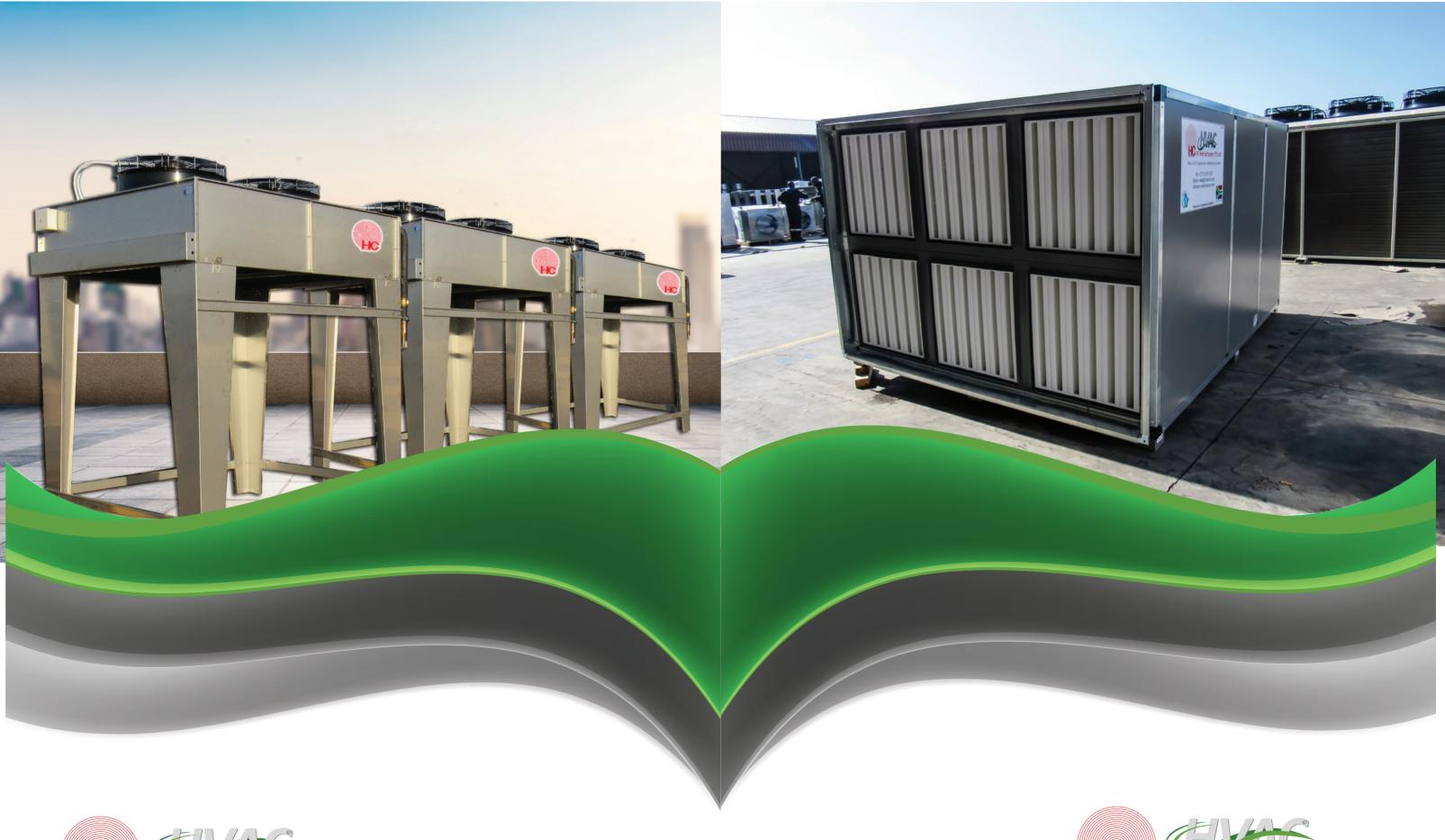
SUPPLY AIR

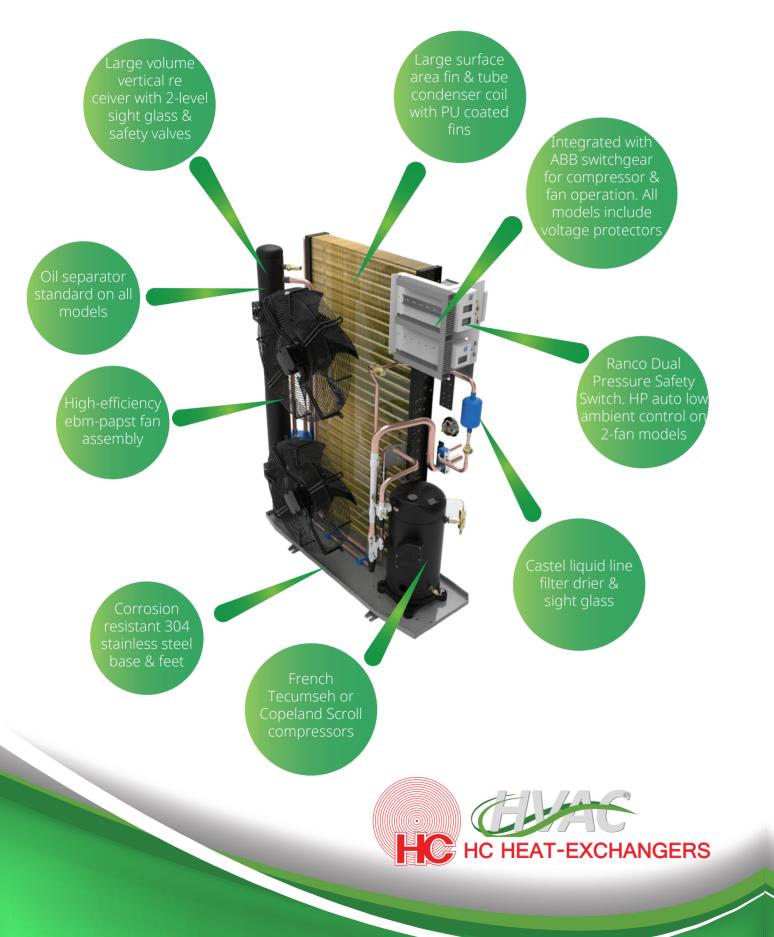


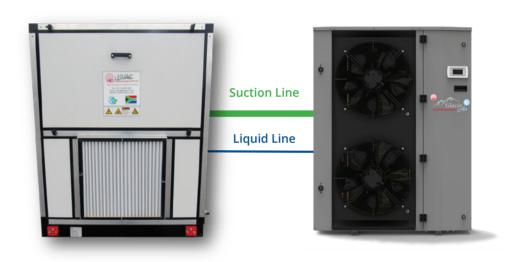
- RETURN AIR

SUPPLY AIR

TYPE H







Cooling Only - Local Solution Simple & Robust

Special Features

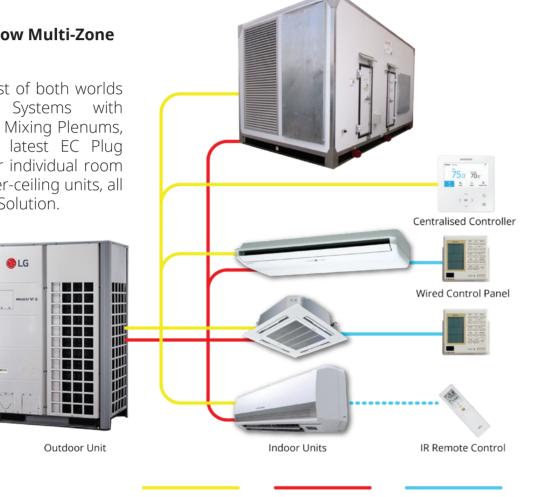
- Increased liquid receiver volumes
- SANS347 compliant liquid receivers with
 ABB electrical switch gear pressure relief valves
- Externally visible twin liquid level sight • glasses (for Monitoring & Charging)
- Adjustable Ranco dual pressure switches
- Integrated oil separator •
- Suction & liquid service valves
- 100% lead TGIC & CR free, environmentally • friendly light grey powder coating
- No PC boards or electronics on standard models

•

•

the project valuable site time.

quality workmanship where critical processes such as brazing with nitrogen are continuously adhered to.


- Standard ebm-papst axial fan motors • French Tecumseh and Copeland Scroll Compressors
- Liquid stop valve before the filter drier and moisture indicator for ease of service
 - Aesthetic and robust galvanised sheet metal casing with light grey epoxy powder coated finish
 - 304 stainless steel base plate & mounting

- We offer you Variable Refrigerant flow Rooftop Packaged Units with high efficiency EC Plug Fan technology all on a common base. With no need for inter-connecting site piping or wiring, we save the contractor and
- All workmanship is carried out in a controlled factory environment. Here you can be assured of better

Innovation through Collaboration

Variable Refrigerant Flow Multi-Zone **Hybrid Solution**

These units offer the best of both worlds including, Centralised Systems with various filtration options, Mixing Plenums, Heat Recovery Wheels, latest EC Plug Fan technology and your individual room cassette, midwall or under-ceiling units, all on one HC-HVAC Hybrid Solution.

Communication Wiring Refrigeration Piping RC Line

We are proud to offer you innovative solutions with all leading brands of VRV/F system providers

Rooftop Units

Rooftop Packaged Units (RTPU)

range of energy efficient Rooftop available: Packaged Units with innovative technologies, designed for the use in commercial and industrial applications.

The units range from 10kW to 700kW of cooling, with varying supply air volumes (m³/s). All units • have programmable controllers with all the . safeties and control sequences forming an • integral part of the Rooftop Unit control logic.

Our design team has a wealth of industry knowledge, which allows our designs to take into consideration the value propositions of all key stakeholders such as contractors, consultants, architects and the end users.

All our Rooftop Units are factory tested and . quality checked before installation. Only final . duct connections, power supply, sensor wiring and drain connections are required on site. This drastically reduces any installation costs · Semi-Hermetic Reciprocating Compressors and saves critical site programming time. Our Rooftop Units are designed for quick and easy • UVC - Germicide Lights installation by qualified artisans.

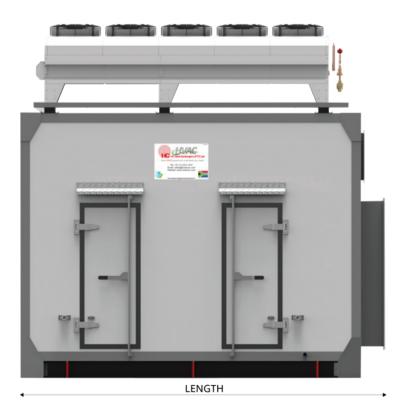
We pride ourselves in offering solutions to the industry challenges and hence our unit designs can incorporate various bespoke options.

We support a greener future and we are therefore mindful of the environmental and climate impact that our unit designs have in terms of refrigerant choices. We are constantly looking at the Ozone Depleting Potential (ODP) and the Global Warming Potential (GWP) of the refrigerants we use.

We will continue to use refrigerants with a lower environmental impact and we fully support the Montreal Protocol amended in Kigali, Rwanda in 2016.

-HVAC offers the industry a wide **The following are some of the options**

- . Cooling Only Units
- Heatpump Reverse Cycle Heating With Automatic Defrost
- Compact Designs
- Mixing Plenums
- Walk-In Plenums
- High Efficiency Filtration Systems Primary, Secondary and HEPA Filtration
- Economy Cycle Free Cooling Systems
- Fresh Air Control With CO2 Sensors
- High Efficiency EC Plug Fans Supply Air Stream
- High Efficiency EC Plug Fans Return And Exhaust Stream.
- Averaging Air Sensor Control
- Return Air Sensor Control
- Supply Air Sensor Control
- Hermetic Scroll Compressors
- Screw Compressors
- Inverter Driven Compressors
- R407C, R410A, R744 (CO2) Etc.
- Variable Flow Function for VAV Systems
- Heat Recovery Wheels Energy Recovery • Systems
- Air-To-Air Heat Exchangers Energy **Recovery Systems**
- Humidifiers
- Sound Attenuators



HEIGHT

Model N°	Supply Air	Total Cooling Capacity	Unit	Unit	Unit	Supply Air Spigot	Return Air Spigot
	Quantity (m3/s)	(kW)	Length (mm)	Width (mm)	Height (mm)	WxH (mm)	WxH (mm)
HC-RTPU-C 2-30	2	29.8	2900	1700	1210	1000 x 500	1000 x 1000
HC-RTPU-C 2-33	2	33.4	2900	2300	1210	1000 x 500	1000 x 1000
HC-RTPU-C 2-38	2	37.5	2900	2300	1210	1000 x 500	1000 x 1000
HC-RTPU-C 3-40	3	44.2	3000	2300	1210	1300 x 500	1000 x 1000
HC-RTPU-C 3-60	3	57.0	3000	1700	1820	1800 x 500	1500 x 1200
HC-RTPU-C 4-60	4	72.4	3000	2300	1820	1800 x 500	1500 x 1200
HC-RTPU-C 4-70	6	95.3	3400	2900	1820	1800 x 500	1500 x 1200
HC-RTPU-C 5-80	6	101.9	3400	2900	1820	2100 x 500	1800 x 1500
HC-RTPU-C 6-100	7	116.1	3400	2900	1820	2100 x 500	1800 x 1500
HC-RTPU-C 6-110	6	106.4	3400	2300	3685	2100 x 500	1800 x 1500
HC-RTPU-C 7-120	7	116.8	3400	2300	3985	2100 x 500	1800 x 1800
HC-RTPU-C 8-130	8	129.6	4000	2300	3985	2100 x 500	1800 x 1800

Compact Rooftop Units

(Range 30 - 130kW)

Ì	
HEIGHT	
ļ	WIDTH

		-
	LENGTH	

Model N°	Supply Air	Total Cooling Capacity
	Quantity (m3/s)	(kW)
HC-RTPU-L- 9-150-HP	9	145.6
HC-RTPU-L-10-160-HP	10	162.0
HC-RTPU-L-12-190-HP	12	191.8
HC-RTPU-L- 13-210-HP	13	212.8
HC-RTPU-L- 14-230-HP	14	233.6
HC-RTPU-L- 16-260-HP	16	259.2
HC-RTPU-L- 17-290-HP	17	288.0
HC-RTPU-L- 19-320-HP	19	319.0
HC-RTPU-L- 21-350-HP	21	350.0
HC-RTPU-L- 23-390-HP	23	389.0

Large Rooftop Units

Unit	Unit	Unit	Supply Air Spigot	Return Air Spigot
Length (mm)	Width (mm)	Height (mm)	WxH (mm)	WxH (mm)
4900	2900	3285	1800 x 1100	1400 x 1000
4900	2900	3285	1800 x 1200	1400 x 1100
4900	2900	3485	1850 x 1350	1450 x 1250
4900	3000	3485	2000 x 1350	1600 x 1250
4900	3500	3485	2200 x 1300	1800 x 1200
4900	3500	3585	2300 x 1400	1900 x 1300
5500	3700	3600	2500 x 1500	2100 x 1400
5500	3700	3600	2500 x 1500	2100 x 1400
5500	3700	3600	2600 x 1600	2200 x 1500
5500	3700	3600	2700 x 1700	2300 x 1600

(Range 145 - 390kW)

Hybrid Rooftop Units

contractors and facility management companies the latest and most innovative solutions for their Air Handling and Rooftop Unit requirements. The Rooftop Packaged Units have evolved hours. considerably over the last few years with the introduction of the new Hybrid VRV/F technologies.

With the increasing cost of electricity and Rooftop Unit applications the unit operates at overall input costs, responsible clients are always looking for the most efficient products. Therefore the Energy Efficiency Ratio (EER) and now the Seasonal Energy Efficiency Ratio (SEER) have become critical factors in the decision making process. This allows for the latest VRV/F technologies to be included into the units.

The VRV/F products are equipped with the teams with excellent testing and laboratory latest Scroll compressor technology, with some brands offering all the compressors operating on full inverter technology. This enables variable refrigerant flow and low start-up current, with stepless capacity control.

We are proud to offer our clients, consultants, On larger unit capacities there are multiple compressors allowing for the regulation of each condensing units operating times. This leads to all the compressors working at similar operating

> The part load efficiency of the VRV/F systems offers the end-user excellent energy efficiency. This is ideal considering that in the majority of part load conditions due to the varying load profile of the building coupled with varying occupancy.

> These VRV/F condensing units are designed and manufactured in world class production facilities. The product designs are continuously improved by large Research and Development facilities.

> The high commissioning and testing standards of the units allow them to be charged and test run on modern software with detailed reports being generated.

The VRV/F condensing unit continuously designs are improved by large Research Development and teams with excellent testing and laboratory facilities.

Energy efficiency is a core design feature of VRV/F equipment and this is evident in the compressor and heat exchange technologies utilised in these products. The low start-up power requirements due to the inverter compressors enable continuous savings over the units life cycle. The majority of Air Conditioning applications have varying building load profiles, occupancy rates as well as ambient conditions which is ideal for VRV/F equipment that provides excellent energy efficiency at part load conditions.

VRV/F units can be used in a wide variety of residential and commercial applications. The units are especially popular when simultaneous heating and cooling is required and heat recovery is optimised.

Globally Innovative Solutions, whilst creating and sustaining local employment.

This is the power of Innovation through Collaboration.

HEIGHT	
·	
÷	WIDTH

	Hybrid Compact Eco Package - With EC Plug Fans												
Model No Reference	Supply Air Quantity (m ³ /s)	Total Cooling Capacity (kW)	Unit Length (mm)	Unit Width (mm)	Unit Height (mm)	Approximate Rigging Weight (kg)	Motor Size (kW per Fan)	Unit MFA (Amps)	Drain 2off (mm)				
НС-НСЕР-В-1-20-НР	1.2	22.4	3400	1500	2100	750	2.5	23.8	40				
НС-НСЕР-В-2-30-НР	2	33.5	3400	1500	2300	1000	2.5	35.8	40				
НС-НСЕР-В-3-50-НР	3	50.4	3400	1700	2500	1550	3.8	55.2	40				
НС-НСЕР-В-4-70-НР	4	67.4	3700	2300	2500	2400	4.3	69.5	40				
НС-НСЕР-В-5-80-НР	5	83.9	3700	2300	2500	2700	3.8	90.4	40				
НС-НСЕР-В-6-100-НР	6	101	3700	2600	2800	3300	3.8	90.4	40				
НС-НСЕР-В-7-120-НР	7	118	4500	3000	2800	3800	4.3	113	40				
НС-НСЕР-В-8-140-НР	8	135	4500	3000	3100	4400	2.5	136.4	40				
НС-НСЕР-В-9-150-НР	9	151.2	4500	3000	3100	4500	3.8	140.6	40				

Power Supply - 380-415V - 50Hz

MFA - Maximum Fuse Amps

The above Nominal Cooling Capacities are based on indoor conditions: 27°C DB, 19°C WB and outdoor temperature: 35°C DB @ sea level

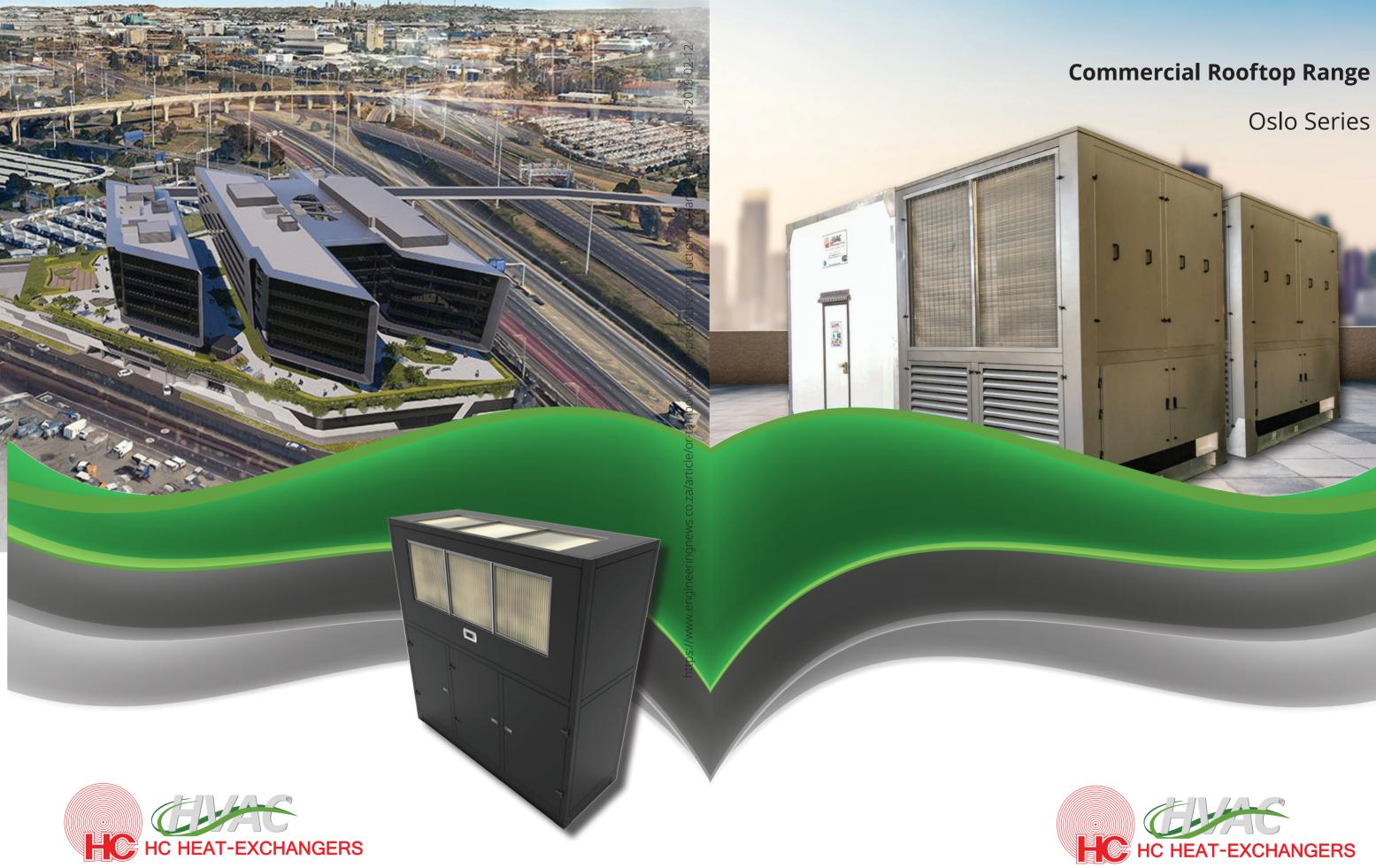
Compact Hybrid Rooftop Units

(Range 22 - 150kW)

	<image/>
LEN	GTH

Hybrid Large Eco Package - With EC Plug Fans											
Model No Reference	Supply Air Quantity (m ³ /s)	Total Cooling Capacity (kW)	Unit Length (mm)	Unit Width (mm)	Unit Height (mm)	Supply Air Spigot WxH (mm)	Return Air Spigot WxH (mm)	Approximate Rigging Weight (kg)	EC Plug Fan Motor Size (kW per Fan)	Unit MFA (Amps)	Drain 2 off (mm)
НС-НЕСР-В-10-170-НР	10	168	6750	2800	2400	930 x 1800	945 x 1800	4900	3.8	165.6	40
НС-НЕСР-В-11-190-НР	11	191	6750	2800	2600	920 x 2000	935 x 2000	5500	4.3	165.5	40
НС-НЕСР-В-12-200-НР	12	202	6750	2800	2600	1000 x 2000	1020 x 2000	5700	4.3	183.5	40
НС-НЕСР-В-13-220-НР	13	224	6750	2800	3000	905 x 2400	925 x 2400	6200	4.3	219.5	40
HC-HECP-B-14-240-HP	14	236	8000	2800	3000	975 x 2400	995 x 2400	6700	3.8	202	40
HC-HECP-B-15-260-HP	15	258	8000	3400	3000	1045 x 2400	1065 x 2400	6700	4.3	240	40
НС-НЕСР-В-16-270-НР	16	274.4	8000	3400	3000	1115 x 2400	1135 x 2400	7000	4.3	276	40
HC-HECP-B-17-280-HP	17	280	8000	3400	3000	1180 x 2400	1205 x 2400	7100	4.3	276	40
НС-НЕСР-В-18-300-НР	18	302.4	8000	3400	3000	1250 x 2400	1275 x 2400	7900	3.8	330	40

Power Supply - 380-415V - 50Hz


MFA - Maximum Fuse Amps

The above Nominal Cooling Capacities are based on indoor conditions: 27°C DB, 19°C WB and outdoor temperature: 35°C DB @ sea level

Large Hybrid Rooftop Units

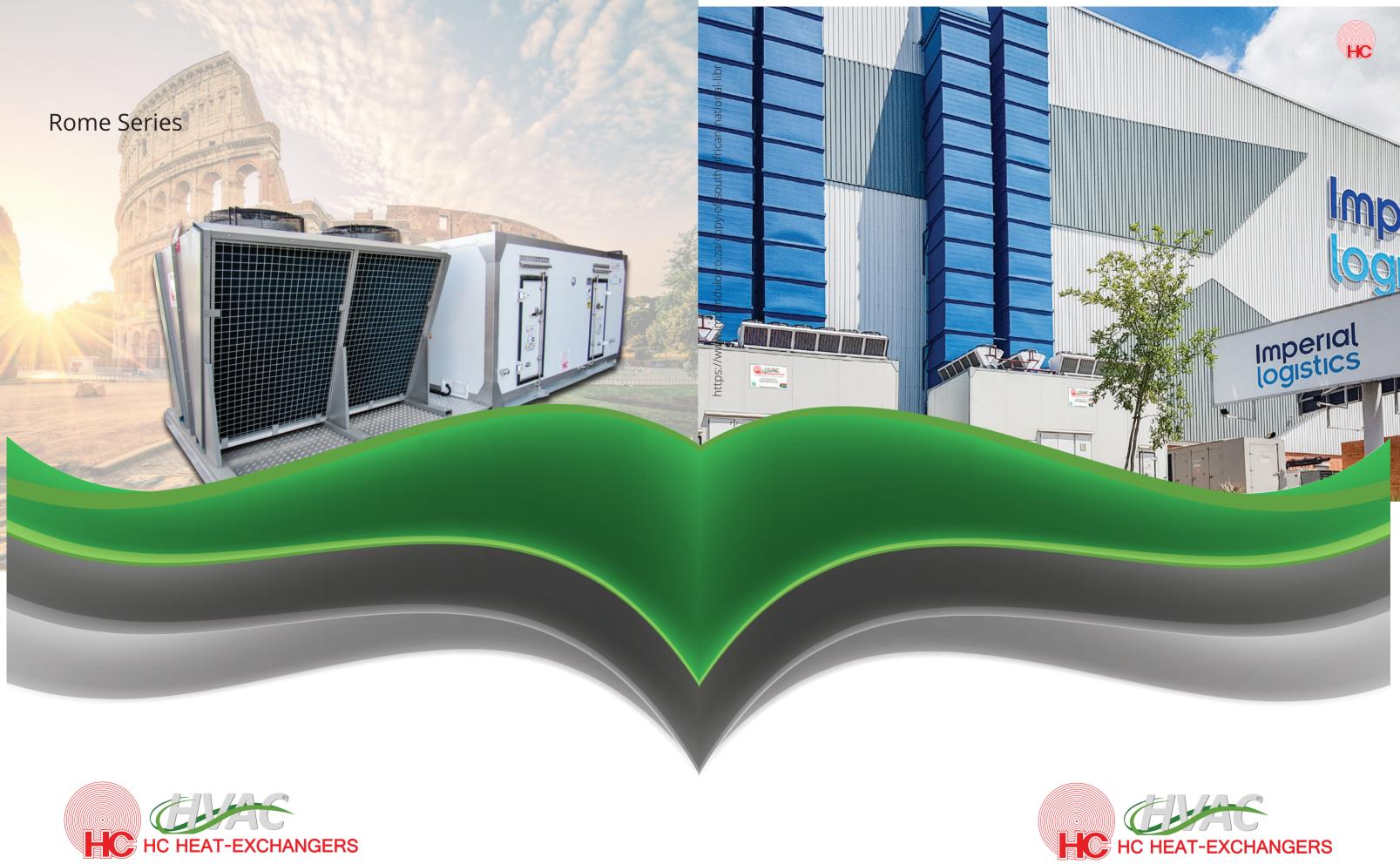
(Range 170 - 300kW)

Athens Series

Designed to meet the highest performance and energy efficiency standards

Berlin Series

HC


Odessa Series

Monaco Series

TYPE A

TYPE B

TYPE C

Remote Panels

Carel pGD LCD Display

Plant control OFF/ON Plant mode Cool/Vent Fan Run Indication - Green Light General Fault Alarm - Red Light After Hours Switch - 2 Hours 300 x 220 x 120mm - PVC

Plant control OFF/ON Plant mode Cool/Vent Fan Run Indication - Green Light General Fauly Alarm - Red Light After Hours Switch - 2 Hours 450 x 370 x 130mm - PVC

Guideline ACH (Air Changes per Hour)

Category	Builiding	From	То	Variables to Consider
	All spaces in general	4		
Homes	Attic spaces for cooling	12	15	Influenced by heat and moisture
Agriculture	Cows			
	Pig Houses	6	10	Outside Temperatures, Concentration of Cows, Pigs, Chicken per Square
	Poultry Houses			Metre are Important Considerations
	Banks	4	10	The Greater the People per Square Metre, the Greater the ACH
	Office	4	10	Requirement
Commercial	Hairdresser	6	10	Fumes, Heat and People per Square Metre Decide this
	Kitchen	15	60	Heat and Moisture Decide the People per Square Meter
	Conference Room	12		
	Toilet	10		
	Hospital Rooms	4	6	The Greater the People per Square Metre, the Greater the ACH
Health	Medical Centers	8	12	Requirement
	Clinic	6	12	
Hospital Waiti Ward Classi Librai Asser Audit	Waiting Room	10	15	The Greater the People per Square Metre, the Greater the ACH
	Ward	6	10	Requirement
	Classroom	6	12	
	Library	4	10	
	Assembly Halls	4	6	
Public	Auditoriums	8	15	The Greater the People per Square Metre, the Greater the ACH
	Cafeterias	12	15	Requirement
	Churches	8	15	
Building	Classrooms	6	12	
	School Classrooms	4	12	
	Lunchrooms	12	15	Influenced by Heat, Moisture and Density of People
				Heat, Moisture, Fumes, Concentration of people are Important
	Cooking Room	15	20	Considerations
	Public Toilet	20		
	Bakeries	20	30	
	Boiler Rooms	15	20	Moisture and Heat
	Factory Buildings			
	(Fumes and Moisture)	10	15	Fumes and Moisture
	Factory Buildings			
Industrial	(Ordinary)	2	4	Low Density of People
	Galvanizing Plants	20	30	- Fumes, Heat and Moisture
	Mills, Textile Dye	15	20	Fullies, Heat and Moisture
	Paint Shop	15	20	Fumes
	Precision Manufacturing			Heat, Moisture, Fumes, Concentration of People are Important
	Frecision Manufacturing	10	50	Considerations
	Bars	20	30	People per Square Metre Decide this
	Club Houses	20	30	
	Cocktails Lounges	20	30	The Greater the People per Square Metre, the Greater the ACH
	Conference Hall	8	10	- Requirement
Leisure	Dining Hall	8	10	
Leisure	Restaurant	8	12	
	Hotel Kitchen	15	20	Heat, Moisture, Fumes, Concentration of People are Important
	Hotel Laundry	15	20	Considerations
	Hotel Toilet	10	12	
	Nightclubs	20	30	Fumes and Volume of People
Restaurant	Restaurants	6	10	A Busy Restaurant will Require More Changes per Hour
Restaurant	Restaurant Kitchen	20	30	Heat, moisture and Density of People can Influence this

Area Served Banks, Court Houses and Municipal buildings Bars, Taverns, Clubhouses and Nightclubs Dedicated Outside Air Systems ie. Hospitals Dining Halls, Lunch Rooms and Cafeterias Hospital Patient Rooms Libraries and Museums Malls and Shopping Centers Medical Centers, Clinics and Offices Pharmarcy, Jewellery and Beauty Stores Police Station, Fire Stations and Post Offices Restaurants Retail and Department Stores School Classrooms Supermarkets

http://arco-hvac.ir/wp-content/uploads/2015/05/HVAC-Equations-Data-and-Rules-of-

Cooling Load - Rules of Thumb

	Rate W/m ²			Rate /HR /	m²
151	-	189	515	-	645
189	-	252	645	-	860
126	-	378	430	-	1290
151	-	378	515	-	1290
126	-	151	430	-	515
107	-	252	365	-	860
107	-	151	365	-	515
107	-	252	365	-	860
126	-	151	430	-	515
167	-	217	570	-	741
107	-	151	365	-	515
151	-	378	515	-	1290
126	-	189	430	-	645
135	-	167	461	-	570
107	-	151	365	-	515

South African Average Altitude and Ambient Temperatures

	Altitude	Design		Altitude	Design
Location	Meters	Temperature	Location	Meters	Temperature
Alexander Bay	0	32°C	Kroonstad	1348	32°C
Aliwal North	1337	35°C	Krugersdorp	1699	31°C
Barberton	852	35°C	Ladysmith	1000	32°C
Bathurst	259	34°C	Lindley	1540	33°C
Beaufort West	863	35°C	Louis Trichard	961	35°C
Berlin	1341	30°C	Lydenburg	1470	33°C
Bethlehem	1615	32°C	Mafikeng	1272	35°C
Bloemfontein	1371	34°C	Maseru	1571	33°C
Bremersdorp	626	32°C	Mbabane	1163	32°C
Cape Town	0	32°C	Middleburg	1447	31°C
Carletonville	1341	32°C	Mantagu	223	34°C
Carolina	1690	33°C	Musina	548	35°C
Ceres	457	36°C	Midrand	1510	33°C
Clanwilliam	76	43°C	Mbombela	731	34°C
Cradock	873	35°C	New Castle	1185	32°C
De Aar	1243	35°C	Oudtshoorn	334	37°C
Dundee	1250	32°C	Phalaborwa	405	36°C
Durban	0	32°C	Pietermaritzburg	792	32°C
East London	0	32°C	Polokwane	1301	34°C
Ermelo	1675	32°C	Piet Retief	1271	33°C
Estcourt	1181	34°C	Port Shepstone	0	30°C
Eshowe	502	33°C	Potchefstroom	1352	33°C
Fauresmith	932	35°C	Mokopane	1176	33°C
Fort Beaufort	457	39°C	Tshwane	1376	34°C
Francistown	1004	37°C	Queenstown	1077	37°C
Fraserburg	1280	35°C	Roberston	172	35°C
Gaberone	1007	33°C	Roodeplaat	1066	35°C
George	0	31°C	Rustenburg	1234	35°C
Germiston	1665	31°C	Thabazimbi	1028	37°C
Graaf-Reinett	750	40°C	Thohoyandou	724	35°C
Grahamstown	539	36°C	Uitenhage	110	37°C
Grootfontein	1263	35°C	Umtata	701	34°C
Gqeberha	0	32°C	Uppington	804	38°C
Hanover	1337	34°C	Ventersdorp	1484	32°C
Harrismith	1628	34°C	Vereeniging	1417	33°C
Hope Town	1219	35°C	Victoria West	1417	35°C
Howick	1052	35°C		1209	35°C
lohannesburg	1752	32°C	Vryburg Bela Bela	1100	35°C
	1/52	32 C 39°C	Welkom	1375	35 C 34°C
Keetmanshoop Kimborlov	1196	39 C 35°C		1375	34 C 32°C
Kimberley			Wepner Windhool		
Kingwilliams Town	375	37°C	Windhoek	1728	34°C
Klerksdorp	1324	34°C	Worcester	201	37°C
Knysna	0	31°C			

According to CIBSE Guide B - HVAC & Refrigeration 2005 / Section 3.10 Ductwork / Table 3.2, the maximum recommended duct velocities for low pressure ductwork systems, depending on acoustic criteria and project type.

Max	imum	Duct \	/el	ocities	for	Low	Pr∉

Typical applications

Auditorium, Lecture Halls, Cinemas Bedrooms (non-domestic buildings) Department Stores, Supermarkets, Shops, Cafete Domestic Buildings (bedrooms) General Offices, Restaurants, Banks Industrial Buildings Private Offices, Libraries

3. Greek Symbols: η = Efficiency (neta) ρ = Density (rho)

4. Mass flow rate (*m*)

$$\dot{m} = \dot{V} x \rho kg/s$$

$$OR \ \dot{m} = \dot{V} x \frac{1}{v} \therefore \ \dot{m} = \frac{\dot{V}}{v} kg/s$$

5. Quantity of heat (Q)

(for a change in temperature)

 $Q = \dot{m} Cp \Delta T kJ/s \text{ or } kW$

(For a change of phase)

 $Q = \dot{m} \cdot hfg \ kJ/s \ or \ kW$

(hfg = latent heat required)

6. Require flow rate $l/s = \frac{Qs}{4.187 x \Delta T}$

Specific Heat Capacities

Air	 1.012 kJ/kg. k
Water Vapour	- 1.996 kJ/kg. k
Ice	- 2.108 kJ/kg. k
Water	- 4.187 kJ/kg. k

Maximum Duct Velocities

sure Systems in Relation to Noise Levels						
	Typical Noise	v	Velocity (m/s)			
	Rating (NR)	Main Ducts	Branch	Runouts		
	25-30	4	3.5	<2.0		
	20-30	5	4.5	2.5		
as	40-45	9	7	4.5		
	25	3	2.5	<2.0		
	35-40	7.5	6	3.5		
	45-55	10	8	5		
	30-35	6	5.5	3		
	20-25	4	2.5	<2.0		

Useful Equations

 Specific Enthalpy (h) To calculate the total energy transfer

 $\dot{Q} = \dot{m} \Delta h \ kJ/s \ or \ kW$

^{8.}
$$t_M = t_A + f_R (t_B - t_A)$$

 $t_M = DB$ temperature of mixture

 $t_A = DB$ temperature of coldest airstream

 $t_B = DB$ temperature of hottest airstream

 f_R = quantity (or mass) of hottest airstream expressed as a fraction of the total air quantity (mass).

$$f_R = \frac{m_B}{m_A + m_B}$$
$$= \frac{\frac{m_B}{v_B}}{\frac{m_A}{v_A} + \frac{m_B}{v_B}}$$
$$= \frac{V_B}{V_A + V_B}$$

- 9. CFM = 2119 x l/s
- 10. BTU/HR = 3.413 x Watts
- 11. ACRH Air Change Rate Per Hour

$$m^3 / s = \frac{m^3 x ACRH}{3600}$$

Honeywell Refrigerant Application Guide

COMMERCIAL R	EFRIGE	RATION					
ASHRAE #	GWP ³	Trade Name	Replaces	Blend Composition / ASHRAE Classification ²	Typical Lubricant [,]	Comments	
	AR5		ASHRAE #				
R-1234yf	1	Solstice yf	134a	HFO (single component fluid)	Alkylbenzene, Synthetic (POE, PAG)	Ultra-low GWP and higher capacity solution for vending machines, plug in cabinets, and water chillers.	
				ASHRAE A2L		New equipment only	
R-1234ze	1	Solstice ze	134a	HFO (single component fluid)	Alkylbenzene, Synthetic (POE, PVE,	Ultra-low GWP and high efficiency solution for vending machines, plug in cabinets, and water chillers.	
				ASHRAE A2L	PAG)	New equipment only	
R-455A	146	Solstice L40X	R-404A	R-32/R-1234yf/CO2	Synthetic (POE)	Low GWP blend for low, medium, and high temperature systems Excellent option for self- contained units Close performance match to R-404A New equipment only	
K-555A	110	Soluce L+0X	R-507	ASHRAE A2L	Synthetic (FOL)		
R-450A	547	Solstice N13	R-134a R-401A R-401B	R-134a/R-1234ze	Synthetic (POE)	GWP is 58% lower than R-134a >90% capacity with similar efficiency (101-103% vs R 134a)	
			R-409A	ASHRAE A1		New equipment and retrofits	
			R-404A R-402A	R-32/R-125/		Global warming potential (GWP) is 68% lower than R-	
R-448A	1273	Solstice® N40	R-402A R-22	R-134a/R-1234ze/ R- 1234yf	Synthetic (POE)	404A 5% - 16% lower energy consumption vs R-404A Best capacity and efficiency alternative to R-22 and R-	
			R-507 R-502	ASHRAE A1		404A New equipment and retrofits	
R-134a	1300	Genetron®	R-12	R-134a	Synthetic (POE, PVE)	Similar energy efficiency and good capacity match compared to R-12	
		134a	11 12	ASHRAE A1	oynaleae (i 02, i 12)	Performs well in small hermetic systems	
D 4075	1674	Genetron	R-22 R-404A	R-32/R-125/ R-134a		Good capacity match to R-22 Lower discharge temperature vs R-22 Cost-effective	
R-407F	1074	Performax® LT	R-402A R-408A R-507	ASHRAE A1	Synthetic (POE, PVE)	alternative New equipment and retrofits	
R-452A	1945	Solstice 452A	R-404A	R-1234yf/R-32/R-125	Synthetic (POE)	Low and medium temperature alternative for R-404A Discharge temperature similar to R-404A	
			R-507	ASHRAE A1	oynaicae (i oz)	Transport, condensing units, self-contained units New equipment and retrofits	
Service Gas Refr	igerants			D 125/D 142-4 D 124-		R-404A and R-507 are HFC blends with high GWP.	
R-404A	3943	Genetron 404A		R-125/R-143a/ R-134a ASHRAE A1	Synthetic (POE, PVE)	These refrigerants are subject to future regulations on usage.	
R-507	3985	Genetron AZ-		R-125/R-143a	Synthetic (BOE D)/E)	Honeywell recommends utilizing HFO blends such as Solstice N40 for new equipment and as a replacement	
K-507	5505	50®		ASHRAE A1	Synthetic (I OL, I VL)	for R-404A and R-507 in existing equipment	
R-22	1760	Genetron 22		R-22	Mineral oil	Phaseout Schedule: January 1, 2020: No new R-22 refrigerant can be manufactured or imported into the U.S. or Canada	
11-22		Genetion 22		ASHRAE A1	Willeral Off	Any servicing must use stockpiled or reclaimed material ¹ . 100% reduction in HCFC consumption required by Montreal Protocol	
COMMERCIAL A	IR CON	DITIONING /	CHILLERS				
ASHRAE #	GWP ³	Trade Name	Replaces	Blend Composition / ASHRAE Classification ²	Typical Lubricant [,]	Comments	
	AR5		ASHRAE #				
R-1234ze	1	Solstice ze	R-134a	HFO (Single component fluid)	Alkylbenzene Synthetic (POE, PVE,	Ultra-low GWP solution, best performance match to R 134a	
				ASHRAE A2L	PAG)	New equipment (chillers, small systems)	
R-1233zd	1	Solstice zd	R-123	HFO (Single component fluid)	Alkylbenzene Mineral oil Synthetic (POE, PVE)	Ultra-low GWP solution for low pressure chillers Net equipment only	
				ASHRAE A1	5, Infecte (FOL, FVL)		

	R-450A	547	Solstice N13	R-134a R-409A	R-134a/R-1234ze	Synthetic (POE)	GWP is 58% lower than R-134a >90% capacity with similar efficiency (101-103% vs R	
				R-401A R-401B	ASHRAE A1		134a) New equipment and retrofits	
	R-466A	733	Colorise N44	D 4104	R-32 / R-125 / R-13I1		Nonflammable GWP is 60% lower than R-410A New Equipment Onl	
	(provisional)	155	Solstice N41	R-410A	ASHRAE A1 (preliminary)	Synthetic (POE)		
	R-245fa	858	Genetron 245fa	R-11 R-123	HFC (Single component fluid)	Synthetic (POE, PVE)	Equipment redesign, Organic Rankine Cycle heat transfer fluid	
			24518		ASHRAE B1		New equipment only	
	R-134a	1300	Genetron 134a	R-12	HFC (Single component fluid)	Synthetic (POE, PVE)	Similar energy efficiency and good capacity match to R-12 New equipment and retrofits	
				R-500 R-22	ASHRAE A1			
	R-407C	1624	Genetron 407C		R-32/R-125/R-134a	Synthetic (POE)	Best retrofit alternative to R-22. Close performance match with slightly higher operating pressures	
				R-500	ASHRAE A1		New equipment and retrofits	
	R-410A	1923	Genetron AZ- 20®	R-22	R-32/R-125 ASHRAE A1	Synthetic (POE)	High pressure, high efficiency New equipment only	
Se	rvice Gas							
	R-123	79	Genetron 123	R-11 (HCFC)	HFC (Single component fluid)	Alkylbenzene Mineral oil	Due for phase out in 2020 Limited availability in the	
					ASHRAE B1	Synthetic (POE, PVE)	U.S. as of January 2018	
RF	SIDENTIAL/LI	GHT CO	MMERCIAL A	IR CONDITIO	NING/HEAT PUMP			
	ASHRAE #	GWP ³	Trade Name	Replaces	Blend Composition / ASHRAE	Typical Lubricant [.]	Comments	
		AR5		ASHRAE #	Classification ²			
	R-466A				R-32 / R-125 / R-13I1		Nonflammable	
	(provisional)	733	Solstice N41	R-410A	ASHRAE A1 (preliminary)	Synthetic (POE)	GWP is 60% lower than R-410A New Equipment On	
	R-134a	1300	Genetron 134a	R-12	HFC (Single component fluid)	Synthetic (POE) Alkylbenzene	Similar energy efficiency and good capacity match compared to R-12 New equipment and retrofits	
			1344	R-500	ASHRAE A1	Aikyibenzene		
	R-407C	1624	Genetron	R-22	R-32/R-125/R-134a	Synthetic (POE)	Best retrofit alternative to R-22. Close performanc match with slightly higher operating pressures New equipment and retrofits	
	it fore		407C	D 500		Synthetic (FOL)		
				R-500	ASHRAE A1		New equipment and retrofits	
	R-410A	1923	Genetron AZ- 20	R-500 R-22	ASHRAE A1 R-32/R-125 ASHRAE A1	Synthetic (POE)	New equipment and retrofits High pressure, high efficiency New equipment only	
				R-22	R-32/R-125	Synthetic (POE) Mineral Oil Synthetic	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if	
	R-410A R-422D	1923 2477	20		R-32/R-125 ASHRAE A1		High pressure, high efficiency New equipment only	
M		2477	20 Genetron 422D	R-22 R-22	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a	Mineral Oil Synthetic	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required	
M	R-422D	2477	20 Genetron 422D	R-22 R-22	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/ ASHRAE	Mineral Oil Synthetic	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required	
M	R-422D OBILE AIR COM	2477 NDITIO	20 Genetron 422D NING / AUTO Trade	R-22 R-22 MOTIVE	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/	Mineral Oil Synthetic (POE) Typical	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required Retrofits	
M	R-422D OBILE AIR COM	2477 NDITIO	20 Genetron 422D NING / AUTO Trade	R-22 R-22 MOTIVE Replaces	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/ ASHRAE	Mineral Oil Synthetic (POE) Typical	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required Retrofits Comments Ultra-low GWP solution	
M	R-422D OBILE AIR COM ASHRAE #	2477 NDITIO GWP ³ AR5	20 Genetron 422D NING / AUTOI Trade Name	R-22 R-22 MOTIVE Replaces ASHRAE #	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/ ASHRAE Classification ² HFO (Single component	Mineral Oil Synthetic (POE) Typical Lubricant	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required Retrofits Comments	
M	R-422D OBILE AIR COM ASHRAE #	2477 NDITIO GWP ³ AR5	20 Genetron 422D NING / AUTOI Trade Name	R-22 R-22 MOTIVE Replaces ASHRAE #	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/ ASHRAE Classification ² HFO (Single component fluid)	Mineral Oil Synthetic (POE) Typical Lubricant	High pressure, high efficiency New equipment only Use of Synthetic (POE) will enhance oil return, if required Retrofits Comments Ultra-low GWP solution	
M	R-422D OBILE AIR CON ASHRAE # R-1234yf	2477 NDITIO GWP ⁴ AR5 1	20 Genetron 422D Trade Name Solstice yf Genetron	R-22 R-22 MOTIVE Replaces ASHRAE # R-134a	R-32/R-125 ASHRAE A1 R-125/R-134a/R-600a ASHRAE A1 Blend Composition/ ASHRAE Classification ^a HFO (Single component fluid) ASHRAE A2L HFC (Single component	Mineral Oil Synthetic (POE) Typical Lubricant Synthetic (POE, PAG)	High pressure, high efficiency New equipment onl Use of Synthetic (POE) will enhance oil return, if required Retrofits Comments Ultra-low GWP solution New equipment only (small systems) Similar energy efficiency and good capacity match	

RZ2 traiseout Schedule for AIT Conditioning and Kerrgeration January 1, 2004 35% reduction in HCFC consumption required by Montreal Protocol. January 1, 2010: No new R-22 can be manufactured for new equipment manufactured or imported in US or Canada. 65% reduction in HCFC consumption required by Montreal Protocol. January 1, 2015: 90% reduction in HCFC consumption required by Montreal Protocol January 1, 2020: No new R-22 refrigerant can be manufactured or imported into the US or Canada. Any servicing must be done using stockpiled or reclaimed material. 100% reduction in HCFC consumption required by Montreal Protocol.

²ASHRAE Classification Guide: ASHRAE A1: Nonflammable, low toxicity ASHRAE A2L: Mildly flammable, low toxicity ASHRAE B1: low flammability, higher toxicity Notes

⁴Usting of GWP Values as per Report IPCC WG1 ARS (100-yr time horizon)
(a) CFC=Chlorofluorocarbon: HCFC=Hydrochlorofluorocarbon: HFC=Hydrofluorocarbon: H=Hydrocarbon: FC=Fluorocarbon: HFO = Hydrofluoro-olefin
⁴Check with the compressor manufacturer for their recommended lubricant

CO2 Refrigeration and Air Handling Units

HC-HVAC is proud to offer a range of Air Handling Units that would be incorporated into a total CO2 refrigeration and air conditioning solution.

Systems combining low temp, medium temp and air conditioning loads coupled with Heat Recovery and/or Heatpump solutions are becoming very popular with this natural refrigerant offering.

HC

HC KRÓNOS

 CO_2

The popularity of R744 can be attributed to the following advantages:

•Excellent thermodynamic properties and low energy requirements

•Low toxicity

HC

- •Low Global Warming Potential (GWP=1) •Lower cost than HFC Refrigerants
- Non-flammability
- •No risk of forced refrigerant phase out
- •Zero Ozone Depletion Potential (ODP)

HC Group Head Quarters 8 Amber Road, Elandsfontein Johannesburg, South Africa Tel: +27-11 674 1237 | info@hcgroup.com

www.hcgroup.com